Skip to main content
Log in

Activity Coefficient Prediction for Binary and Ternary Aqueous Electrolyte Solutions at Different Temperatures and Concentrations

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The mean spherical approximation (MSA) model, coupled with two hard sphere models, was used to predict the activity coefficients of mixtures of electrolyte solutions at different temperatures and concentrations. The models, namely the Ghotbi-Vera-MSA (GV-MSA) and Mansoori et al.-MSA (BMCSL-MSA), were directly used without introducing any new adjustable parameters for mixing of electrolyte solutions. In the correlation step, the anion diameters were considered to be constant, whereas the cation diameters were considered to be concentration dependent. The adjustable parameters were determined by fitting the models to the experimental mean ionic activity coefficients for single aqueous electrolytes at fixed temperature. The results showed that the studied models predict accurately the activity coefficients for single electrolyte aqueous solutions at different temperatures. In the systems of binary aqueous electrolyte solutions with a common anion, the GV-MSA model has slightly better accuracy in predicting the activity coefficients. Also, it was observed that the GV-MSA model can more accurately predict the activity coefficients for ternary electrolyte solutions with a common anion, especially at higher concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

R :

universal gas constant (J⋅K−1⋅mol−1)

m :

molality (mol⋅(kg of solvent)−1)

c :

molarity (mol⋅dm−3)

D :

dielectric constant

T :

absolute temperature (K)

t :

relative temperature (°C)

d :

diameter of ions (m)

k :

Boltzmann constant (J⋅K−1)

I :

ionic strength of solution (mol⋅kg−1)

z :

ionic charge

e :

unit electronic charge (J⋅m)0.5

AARD%:

percent of average absolute relative deviation

Y i :

volume, independent group

γ ± :

mean ionic activity coefficient

Γ:

inverse shielding length (m−1)

ρ :

number density (m−3)

υ :

stoichiometric coefficient

elec:

electrostatic

hs:

hard sphere

References

  1. Prausnitz, J.M., Lichtenthaler, R.N., de Azevedo, E.G.: Molecular Thermodynamics of Fluid Phase Equilibria, 3rd ed. Prentice Hall, New York (1999)

    Google Scholar 

  2. Narayanan, K.V., Ananth, M.S.: A modified SCLC model for the thermodynamic properties of single and mixed electrolytes. Fluid Phase Equilib. 114, 89–121 (1996)

    Article  CAS  Google Scholar 

  3. Moggia, E., Bianco, B.: Mean activity coefficient of electrolyte solutions. J. Phys. Chem. B 111, 3183–3191 (2007)

    Article  CAS  Google Scholar 

  4. Chen, C.C.: Toward development of activity coefficient models for process and product design of complex chemical systems. Fluid Phase Equilib. 24, 103–112 (2006)

    Article  Google Scholar 

  5. Blum, L.: Mean spherical model for asymmetric electrolytes. I: Method of solution. Mol. Phys. 30, 1529–1535 (1975)

    Article  CAS  Google Scholar 

  6. Liu, W.B., Li, Y.G., Lu, J.F.: Correlation of mean ionic activity coefficients of electrolyte solutions by the simplified non primitive mean spherical approximation. Fluid Phase Equilib. 162, 131–141 (1999)

    Article  CAS  Google Scholar 

  7. Seyfkar, N., Ghotbi, C., Taghikhani, V., Azimi, G.: Application of the non-primitive MSA-based models in predicting the activity and the osmotic coefficients of aqueous electrolyte solutions. Fluid Phase Equilib. 221, 189–196 (2004)

    Article  CAS  Google Scholar 

  8. Salimi, H.R., Taghikhani, V., Ghotbi, C.: Application of the GV-MSA model to the electrolyte solutions containing mixed salts and mixed solvents. Fluid Phase Equilib. 231, 67–76 (2005)

    Article  CAS  Google Scholar 

  9. Yu, Y.X., Gao, G.H., Li, Y.G.: Surface tension for aqueous electrolyte solutions by the modified mean spherical approximation. Fluid Phase Equilib. 173, 23–38 (2000)

    Article  CAS  Google Scholar 

  10. Lu, J.F., Yu, Y.X., Li, Y.G.: Modification and application of the mean spherical approximation method. Fluid Phase Equilib. 85, 81–100 (1993)

    Article  CAS  Google Scholar 

  11. Ghotbi, C., Azimi, G., Taghikhani, V., Vera, J.H.: On the correlation of the activity coefficients in aqueous electrolyte solutions using the K-MSA model. Ind. Eng. Chem. Res. 42, 1279–1284 (2003)

    Article  CAS  Google Scholar 

  12. Sadeghi, M., Taghikhani, V., Ghotbi, C.: Application of the MSA-based models in correlating the surface tension for single and mixed electrolyte solutions. J. Chem. Thermodyn. 41, 1264–1271 (2009)

    Article  CAS  Google Scholar 

  13. Ghotbi, C., Vera, J.H.: A general expression for the ordered-packed volume fraction of hard spheres of different diameters. Ind. Eng. Chem. Res. 41, 1122–1128 (2002)

    Article  CAS  Google Scholar 

  14. Robinson, R.A., Stokes, R.H.: Electrolyte Solutions. Butterworth, London (1959)

    Google Scholar 

  15. Tippetts, E.A., Newton, R.F.: The thermodynamics of aqueous barium chloride solutions from electromotive force measurements. J. Am. Chem. Soc. 56, 1675–1680 (1934)

    Article  CAS  Google Scholar 

  16. Ananthaswamy, J., Atkinson, G.: Thermodynamics of concentrated electrolyte mixtures. 5. A review of the thermodynamic properties of aqueous calcium chloride in the temperature range 273.15–373.15 K. J. Chem. Eng. Data 30, 120–128 (1985)

    Article  CAS  Google Scholar 

  17. Faita, G., Mussini, T., Oggioni, R.: Thermodynamic functions of aqueous hydrobromic acid at various concentrations and temperatures. J. Chem. Eng. Data 11, 162–165 (1966)

    Article  CAS  Google Scholar 

  18. Holmes, H.F., Mesmer, R.E.: An isopiestic study of aqueous solutions of the alkali metal bromides at elevated temperatures. J. Chem. Thermodyn. 30, 723–741 (1998)

    Article  CAS  Google Scholar 

  19. Åkerlöf, G., Kegeles, G.: Thermodynamics of concentrated aqueous solutions of sodium hydroxide. J. Am. Chem. Soc. 62, 620–640 (1940)

    Article  Google Scholar 

  20. Holmes, H.F., Mesmer, R.E.: Isopiestic molalities for aqueous solutions of the alkali metal hydroxides at elevated temperatures. J. Chem. Thermodyn. 30, 311–326 (1998)

    Article  CAS  Google Scholar 

  21. Rogers, P.S.Z., Pitzer, K.S.: High-temperature thermodynamic properties of aqueous sodium sulfate solutions. J. Phys. Chem. 85, 2886–2895 (1981)

    Article  CAS  Google Scholar 

  22. Mortazavi-Manesh, S., Taghikhani, V., Ghotbi, C.: Modification of the GV-MSA model in obtaining the activity and osmotic coefficients of aqueous electrolyte solutions. Fluid Phase Equilib. 240, 167–172 (2006)

    Article  CAS  Google Scholar 

  23. Robinson, R.A., Harned, H.S.: Some aspects of the thermodynamics of strong electrolytes from electromotive force and vapor pressure measurements. Chem. Rev. 28, 419–476 (1941)

    Article  CAS  Google Scholar 

  24. Harned, H.S., Cook, M.A.: The thermodynamics of aqueous potassium chloride solutions from electromotive force measurements. J. Am. Chem. Soc. 59, 1290–1292 (1937)

    Article  CAS  Google Scholar 

  25. Harned, H.S., Crawford, C.C.: The thermodynamics of aqueous sodium bromide solutions from electromotive force measurements. J. Am. Chem. Soc. 59, 1903–1905 (1937)

    Article  CAS  Google Scholar 

  26. Lanier, R.D.: Activity coefficients of sodium chloride in aqueous three-component solutions by cation-sensitive glass electrodes. J. Phys. Chem. 69, 3992–3998 (1965)

    Article  CAS  Google Scholar 

  27. Deyhimi, F., Salamat-Ahangari, R., Karimzadeh, Z.: Thermodynamic investigation of KCl in the ternary KCl/LiCl/H2O mixed electrolyte system based on potentiometric method. Calphad 31, 522–528 (2007)

    Article  CAS  Google Scholar 

  28. Harned, H.S.: The activity coefficient of hydrochloric acid in concentrated solutions of strong electrolytes. J. Am. Chem. Soc. 48, 326–342 (1926)

    Article  CAS  Google Scholar 

  29. Lindenbaum, S., Rush, R.M., Robinson, R.A.: Osmotic and activity coefficients for mixtures of lithium chloride with barium chloride and cesium chloride with barium chloride in water at 298.15 K. J. Chem. Thermodyn. 4, 381–389 (1972)

    Article  CAS  Google Scholar 

  30. Ji, X., Lu, X., Li, S., Zhang, L., Wang, Y., Shi, J.: Activity coefficients of HCl in the HCl+NH4Cl+H2O systems at 298.15 and 313.15 K. J. Chem. Eng. Data 45, 29–33 (2000)

    Article  CAS  Google Scholar 

  31. Harned, H.S., Copson, H.R.: The dissociation of water in lithium chloride solutions. J. Am. Chem. Soc. 55, 2206–2215 (1933)

    Article  CAS  Google Scholar 

  32. Harned, H.S., Gary, R.: The activity coefficient of hydrochloric acid in concentrated aqueous higher valence type chloride solutions at 25 °C. I. The system hydrochloric acid-barium chloride. J. Am. Chem. Soc. 76, 5924–5927 (1954)

    Article  CAS  Google Scholar 

  33. Harned, H.S., Gary, R.: The activity coefficient of hydrochloric acid in concentrated aqueous higher valence type chloride solutions at 25 °C. II. The system hydrochloric acid-strontium chloride. J. Am. Chem. Soc. 77, 1994–1995 (1955)

    Article  CAS  Google Scholar 

  34. Manohar, S., Sarada, S., Ananthaswamy, J.: Thermodynamics of electrolyte solutions: an e.m.f. study of the activity coefficients of KCl in {KCl(mA)+CaCl2(mB)}(aq) at 298.15, 308.15, and 318.15 K. J. Chem. Thermodyn. 21, 969–976 (1989)

    Article  CAS  Google Scholar 

  35. Roy, R.N., Gibbons, J.J., Ovens, L.K., Bliss, G.A., Hartley, J.J.: Activity coefficients for the system HCl+CaCl2+H2O at various temperatures: Applications of Pitzer’s equations. J. Chem. Soc. Faraday Trans. 78, 1405–1422 (1981)

    Google Scholar 

  36. Khoo, K.H., Lim, T.K., Chan, C.Y.: Activity coefficients for the system HCl+CoCl2+H2O at 298.15 K–effects of higher order electrostatic terms. J. Chem. Soc. Faraday Trans. 74, 2037–2042 (1978)

    Article  CAS  Google Scholar 

  37. Khoo, K.H., Chan, C.: Activity coefficient of hydrochloric acid in the system hydrochloric acid–ammonium chloride–potassium chloride–water at constant total molality 0.5 mol⋅kg−1 at 298.15 K. J. Chem. Eng. Data 24, 28–30 (1979)

    Article  CAS  Google Scholar 

  38. Jiang, C.: Activity coefficients of hydrochloric acid in concentrated electrolyte solutions. 2. HCl+BaCl2+KCl+H2O, HCl+LiCl+KCl+H2O, and HCl+NaCl+KCl+H2O at 298.15 K. J. Chem. Eng. Data 41, 117–120 (1996)

    Article  CAS  Google Scholar 

  39. Reilly, P.J., Wood, R.H., Robinson, R.A.: Prediction of osmotic and activity coefficients in mixed-electrolyte solutions. J. Phys. Chem. 75, 1305–1315 (1971)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cyrus Ghotbi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sadeghi, M., Ghotbi, C. & Abdekhodaie, M.J. Activity Coefficient Prediction for Binary and Ternary Aqueous Electrolyte Solutions at Different Temperatures and Concentrations. J Solution Chem 41, 75–88 (2012). https://doi.org/10.1007/s10953-011-9789-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-011-9789-9

Keywords

Navigation